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The eukaryotic group II chaperonin TRiC/CCT is a 16-subunit

complex with eight distinct but similar subunits arranged in

two stacked rings. Substrate folding inside the central cham-

ber is triggered by ATP hydrolysis. We present five cryo-EM

structures of TRiC in apo and nucleotide-induced states

without imposing symmetry during the 3D reconstruction.

These structures reveal the intra- and inter-ring subunit

interaction pattern changes during the ATPase cycle. In the

apo state, the subunit arrangement in each ring is highly

asymmetric, whereas all nucleotide-containing states tend to

be more symmetrical. We identify and structurally character-

ize an one-ring closed intermediate induced by ATP hydro-

lysis wherein the closed TRiC ring exhibits an observable

chamber expansion. This likely represents the physiological

substrate folding state. Our structural results suggest me-

chanisms for inter-ring-negative cooperativity, intra-ring-po-

sitive cooperativity, and protein-folding chamber closure of

TRiC. Intriguingly, these mechanisms are different from other

group I and II chaperonins despite their similar architecture.
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Introduction

Defects in protein folding are associated with a wide variety

of human diseases, including cancer and amyloid diseases

such as Huntington’s, Parkinson’s, and Alzheimer’s diseases

(Gregersen et al, 2000; Dobson, 2004). The eukaryotic

chaperonin TRiC/CCT (TCP1-ring complex or chaperonin

containing TCP1) folds B5–10% of newly synthesized

cytosolic proteins, including many essential proteins such

as actin, tubulin, and cell-cycle regulators (Rommelaere

et al, 1993; Chen et al, 1994; Thulasiraman et al,

1999; Spiess et al, 2004; Yam et al, 2008). The TRiC

conformation induced by ATP hydrolysis is closely

associated with the productive folding of the substrate

(Meyer et al, 2003).

Chaperonins have diverged into two structurally and

mechanically distinct families: prokaryotic group I chapero-

nins such as GroEL–GroES from E. coli (Xu et al, 1997; Bukau

and Horwich, 1998) and group II chaperonins, which are

further divided into archaeal types (including the thermo-

some, Ditzel et al, 1998; KS-1, Shomura et al, 2004; and

Mm-cpn, Kusmierczyk and Martin, 2003a, b; Reissmann et al,

2007), and the eukaryotic chaperonin TRiC (Frydman et al,

1992). Chaperonin subunits share a common architecture,

that is, each consists of three domains (apical, intermediate,

and equatorial). Unlike GroEL, which employs an additional

cofactor (GroES) acting as a detachable lid (Xu et al, 1997;

Bukau and Horwich, 1998), group II chaperonins have a

built-in lid formed by a protrusion at the tip of the apical

domain of each individual subunit (Ditzel et al, 1998). In

addition, GroEL and archaeal chaperonins consist of 1–3

types of subunits, whereas each ring of TRiC contains eight

different subunits sharing 27–39% sequence identity

(Archibald et al, 2001; Cong et al, 2010). The hetero-oligo-

meric nature of TRiC implies an inherently asymmetric

arrangement among the subunits; however, little is known

about how such structural organization is related to its

functional activity. Notably, the eukaryotic TRiC has unique

functions that the archaeal chaperonins cannot perform,

despite their similar architecture. For instance, many TRiC

substrates cannot be folded by any other chaperonin (Tian

et al, 1995; Frydman, 2001; Hartl and Hayer-Hartl, 2002).

This suggests that TRiC must have unique specificity and

properties required for maintaining protein homeostasis in

the eukaryotic system.

There have been several cryo-EM studies of TRiC in the

apo and a variety of nucleotide-containing states (Llorca et al,

1999, 2001; Booth et al, 2008; Cong et al, 2010). The 4 Å

cryo-EM structure of the closed state suggested a specific

model for the 8-subunit arrangement (Cong et al, 2010).

Recently, two crystal structures of TRiC bound with tubulin

or actin and ATP analogue were reported (Dekker et al, 2011;

Munoz et al, 2011) and suggested an alternative 8-subunit

arrangement different from the cryo-EM model. Therefore,
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the true ordering of the eight subunits in TRiC complex

remains uncertain.

The present investigation is aimed at determining

the quaternary structure changes undertaken by TRiC during

its ATPase cycle. We report five cryo-EM maps of TRiC in

the apo state and the chemically distinct nucleotide-contain-

ing states throughout the ATPase cycle. We did not impose

symmetry in the 3D reconstruction process, and unlike

other group II chaperonins, this study revealed a surprising

degree of asymmetry in the conformation of the open,

nucleotide-free state. Our composite structures have revealed

a distinct interaction pattern of the 16 TRiC subunits in

each of these biochemical states, led to a plausible mechan-

ism of lid closure and could illuminate the positive

and negative cooperative phenomena occurring in TRiC

upon ATP hydrolysis.

Results

Cryo-EM maps of TRiC throughout the ATPase cycle

To investigate the structural mechanisms of TRiC conforma-

tional transitions during its ATPase cycle (Figure 1), we

carried out single particle cryo-EM studies of bovine TRiC

in well-defined biochemical states: apo (nucleotide-free),

ATP-bound (mimicked by non-hydrolysable ATP analogue

AMP-PNP), ADP-bound, and two ATP-hydrolysis transition

state analogues induced by ADP-AlFx and ATP-AlFx, respec-

tively (Meyer et al, 2003). Each nucleotide state was obtained

by incubation of TRiC with the respective nucleotide analo-

gue and buffer (see Materials and methods).

As the first step of the analysis, we carried out reference-

free 2D image analysis on the end-on view images to evaluate

whether there is any obvious conformational heterogeneity

in each state. TRiC–ADP-AlFx showed two drastically differ-

ent 2D image patterns, suggesting structural heterogeneity.

One has the characteristic appearance of a both-ring

open conformation (Supplementary Figure S1A) while the

other shows a unique twisted pattern of all the subunits

(Supplementary Figure S1B). The 2D images of the

other states appeared more homogeneous. Therefore, a multi-

reference refinement procedure in EMAN1 (Chen et al, 2006)

was adopted for the TRiC–ADP-AlFx data set, while

the standard refinement procedure was applied to the

other states.

Since the eight subunits of TRiC are all different, no

symmetry was imposed in the reconstruction process for all

the five states presented here (Figures 2 and 3), allowing us to

assess structural differences among the eight distinct subu-

nits. The closed ATP-AlFx state was previously determined at

4.7 Å resolution (Cong et al, 2010), while the resolutions of

the other four states were found to be 10.5–13.9 Å

(Supplementary Figure S2). This resolution limit can be

attributed to preferred particle orientation on the cryo-EM

grid, continuous conformational variations, and/or subtle

structural heterogeneity in TRiC, which have been found in

cryo-EM studies of group II chaperonins (Clare et al, 2008;

Zhang et al, 2011).

A unique asymmetric pattern among the eight subunits

of TRiC in the nucleotide-free state

The end-on view of apo-TRiC reveals an obvious asymmetric

pattern among its eight distinct subunits (Figure 2A).

However, we cannot determine the subunit identity in

this map determined at 10.5 Å resolution. Nevertheless, the

structural features of the subunits are distinct enough to

annotate them from a1 to a8 for one ring and a01 to a08
for the other ring. A cylindrical ‘unwrapping’ was applied

to the map, and exhibits a pseudo two-fold symmetry be-

tween the two rings (Figure 4A). This symmetry was con-

firmed quantitatively by the rotational correlation analysis

between the two rings (Figure 5A). This pseudo two-fold

symmetry is located at the inter-ring interfaces between

subunits a1 and a01, and a5 and a05 (Figure 2A). Therefore,

both of the densities (a1 and a01) should correspond to

the same CCT subunit; and the same applies to a5 and a05.

The presence of the pseudo two-fold axis in this symmetry-

free reconstruction reinforces our previous observation in

the 4.7 Å resolution cryo-EM structure of TRiC–ATP-AlFx

(Cong et al, 2010). Therefore, the subunit ordering is identical

in both rings but arranged in opposite directions as viewed

from the side (Figure 4A). Since the question of subunit

ordering of TRiC still remains uncertain (Cong et al, 2010;

Dekker et al, 2011), we will only refer to the subunits in the

complex as a1–a8. Our conclusions are valid for both pro-

posed models, since both agree on the existence of an inter-

ring two-fold symmetry axis.

In the apo-TRiC map, both a1 and a01 subunits display a

significantly weaker density than all the other subunits

(Figure 4A). This structural characteristic may be caused by

the extremely dynamic nature of this subunit as shown in

a movie generated from a superposition of a set of reference-

free 2D averages of end-on views (Supplementary

Movie 1A). Such subunit flexibility is analogous to a large

crystallographic B-factor, making a high-resolution structural

Figure 1 Cryo-EM study of TRiC conformational cycle. Cartoon
diagram illustrates the TRiC conformational transitions in the apo
state and four distinct nucleotide biochemical states throughout
the ATPase cycle. In addition, a representative micrograph of
ice-embedded TRiC in each state is shown. Scale bar is 320 Å.
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determination of the apo state impractical (Zhang et al, 2010).

Contrary to a1 and a01, the densities of both a5 and a05 are

better resolved in both rings, and thus more rigid

(Supplementary Movie 1A; Figure 2A).

Another characteristic subunit in this apo-TRiC map is a3,

which appears to tilt outward from the central chamber

(Figure 5B) and lean towards one of its neighbouring sub-

units (a4), thus separating it further from the other neigh-

bouring subunit (a2) (Figures 4A and 5B). The unwrapped

displays (Figure 4) show the relationship between the subunit

pairs across the rings, for instance, a3–a07, a4–a06 etc.

Figure 4A shows that the line between subunit a3 in one

ring and subunit a07 in the other ring has a larger tilt angle

and is less parallel (Figure 4A) to the lines joining other

subunit pairs (e.g., a2 and a08).

Based on the above observations, it is tempting to postu-

late that the conformations of the very dynamic subunit (a1)

and/or the outward tilting one (a3) might make them more

likely to encounter the substrate proteins in solution and be

critical for substrate recruiting of TRiC.

The TRiC lid remains open in three states of the cycle:

ATP bound, ADP bound, and nucleotide free

The distinct open conformational states of TRiC occur

at essential steps during the folding cycle and facilitate

the binding of substrate proteins (Meyer et al, 2003;

Reissmann et al, 2007). Here, our maps in the apo, ATP-,

and ADP-bound states reveal that the apical domains of

TRiC generally extend towards the central chamber in differ-

ent angles with a slight upward tilt (Figure 2; Supplementary

Figure S3A–C). Importantly, akin to the apo and ADP-

bound states (Figure 2A and C), our maps clearly demon-

strate that TRiC remains open in the ATP-bound state (TRiC–

AMP-PNP; Figure 2B). This is consistent with previous

biochemical and biophysical studies of TRiC (Szpikowska

et al, 1998; Gutsche et al, 2000; Meyer et al, 2003; Reissmann

et al, 2007) and recent structural studies on group II

chaperonins (Huo et al, 2010; Douglas et al, 2011; Munoz

et al, 2011; Zhang et al, 2011). Thus, our observations

unambiguously show that nucleotide binding alone is not

sufficient to trigger lid closure.

Figure 2 Symmetry-free cryo-EM maps of TRiC in the three open conformational states. (A) Top, bottom, and side views of apo-TRiC. In the
top ring, the subunits were labelled as a1–a8; whereas in the bottom ring, the subunits were labelled as a01–a08. The location of the pseudo two-
fold axis was labelled in the side view. The extra density seen in the equatorial domain region is indicated by a black arrow. (B) Equivalent
views of TRiC–AMP-PNP (ATP-bound state). (C) Equivalent views of TRiC–ADP (ADP-bound state). The same radial colour scheme from the
centre of a cylinder is used throughout.
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Structural variations induced by nucleotide binding

Upon nucleotide binding (AMP-PNP or ADP state), TRiC

remains open in both rings similar to the apo state

(Figure 2), and a pseudo two-fold symmetry between two

rings persists in these conformational states (Supplementary

Figure S4). Strikingly, after nucleotide binding the densities of

subunits a1 and a01 appear to be better defined based on

the 2D end-on view image analysis (Supplementary Movie 1B

and C), and the entire complex appears slightly more

symmetrical in 3D (Supplementary Movie 2). These observa-

tions are confirmed by the 3D reconstructions, for instance,

the missing density corresponding to subunits a1 and a01
in apo-TRiC is restored in the AMP-PNP and ADP states

(Figure 4B and D). Of note, the TRiC–AMP-PNP map demon-

strates that the apical domain of subunit a01 in the bottom

ring is less well resolved than its counterpart a1 in the top

ring (Figure 4B). This finding indicates that a1 is possibly

better poised than a01 for the lid closure of the top ring, which

might require all the subunits in one ring to be more

symmetrically arranged. Such asymmetry between a1 and

a01 may reflect the negative inter-ring cooperativity of TRiC

(Kafri et al, 2001; Reissmann et al, 2007).

In total, our data reveal that nucleotide binding can cause

the subunit to be more rigid and the arrangement to become

more symmetric while still open. However, nucleotide bind-

ing is not sufficient to close the folding chamber. This

mechanism is in strong contrast to group I chaperonins

such as GroEL, which undergo their major conformational

rearrangement upon binding, not upon hydrolysis of ATP

(Xu et al, 1997). This difference could be related to the fact

that GroEL has a detachable lid (GroES) to cover the chamber,

while TRiC instead has a built-in lid. Hence, the energy

needed for chamber closure might be different.

Interestingly, the outward tilt of the subunits a3 and a03 in

the apo state is preserved upon nucleotide binding, as seen in

the AMP-PNP state (Figure 5C and F; Supplementary Movie

2). This outward tilting subunit is also seen in the crystal

structure of TRiC–ATP-g-S in complex with tubulin (2XSM)

(Munoz et al, 2011). This ATP-bound state (ATP-g-S) is

equivalent to our AMP-PNP state. These two structures

Figure 3 Symmetry-free cryo-EM density maps of TRiC in the ADP-AlFx and ATP-AlFx states. The same colour scheme is adopted as in
Figure 2. (A) Top, bottom, and side views of TRiC–ADP-AlFx in an asymmetric conformation with the cis-ring closed while the trans-ring still
open. There is a small opening in the lid around subunits a3 (indicated by a black arrow). (B) Views of TRiC–ATP-AlFx in a both ring closed
conformation (Cong et al, 2010). (C) TRiC–ADP-AlFx closed cis-ring chamber inter-volume diameter (B100 Å) compared with that of TRiC–
ATP-AlFx (B92 Å). The diameter was measured at the equivalent location of the intermediate domain of the two rotational averaged maps. The
high-resolution TRiC–ATP-AlFx map was blurred to B10 Å, in a comparable manner to the ADP-AlFx map. (D) Overlapping of the closed ring
of TRiC–ADP-AlFx (in purple) and TRiC–ATP-AlFx (in dark blue) showing different extents of TRiC chamber closure, that is, the closed ring in
TRiC–ATP-AlFx is more compact than that in TRiC–ADP-AlFx.
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match well (Supplementary Figure S5), providing strong

evidence for the existence of this unique conformation of

TRiC in the ATPase cycle.

All open states display an extra density in the equatorial

domain inside the chamber around subunit a6 in one ring and

around subunit a07 in the other ring (indicated by the black

arrow in Figure 2). These densities may correspond to the C

and N termini (Supplementary Figure S6A), which have also

been observed in the 4.7 Å resolution TRiC–ATP-AlFx map

(Cong et al, 2010; Supplementary Figure S6B).

The characteristic outward tilt of subunits a3 and a03, the

location of the pseudo two-fold symmetry axis, and the extra

density in the equatorial domain allowed us to put the

structures of these three states in register. Both the self-

correlation function for each map (Supplementary Figure S7)

and the 2D end-on view movie (Supplementary Movie 1)

reveal that the ADP state (Figure 4D), which is the end

state of the ATP-hydrolysis cycle and might be the substrate

acceptor state, appears to be slightly more symmetrical than

the other two states (Figure 4A and B).

An asymmetrically closed conformation of TRiC in the

ATP hydrolysis transition state

TRiC–ADP-AlFx, the trigonal-bipyramidal ATP hydrolysis

transition state (Melki et al, 1997), has been demonstrated

to represent the physiological substrate folding state (Kafri

et al, 2001; Kafri and Horovitz, 2003; Meyer et al, 2003;

Reissmann et al, 2007; Douglas et al, 2011). This biochemical

state contains a mixture of two TRiC conformations

(Supplementary Figure S1A and B). In all, 35% of the data

were classified into a conformation with both rings open

(Supplementary Figure S1C). The map generated from the

remaining data displays an asymmetric conformation with

one ring closed (cis-ring) and the other ring open (trans-ring)

(Figures 3A and 5D). Using the correlation between this

asymmetric TRiC–ADP-AlFx map and the TRiC–AMP-PNP

map (Figure 5E), we can register their subunits in both

rings (Figure 5G and H). This registration is also apparent

in the match of the characteristic outward tilting subunits a3

and a03 in the two maps (Figure 5G and H).

In the closed cis-ring, we observe a collective inward tilt

motion of all eight subunits (Figure 6A; Supplementary

Movie 3) and a more symmetrical arrangement relative to

all the open states (Figures 2, 3A, and 5G). The apical domain

protruding densities from each subunit come together and

have more contacts to form a lid covering the central cham-

ber of the cis-ring. Although the characteristic subunit a3 tilts

inwards slightly, it displays relatively less contact with its

neighbouring a2 subunit (Figure 5G) and leaves a small

opening in the covering lid at the rendering threshold (in-

dicated by black arrow in Figure 3A, and also shown in

Figure 3D). Conversely, the apical protruding density of a3 is

closer to subunit a4. It is not known if such an arrangement

exists in the presence of substrate. If it does, a productive

Figure 4 Unwrapped maps of TRiC in different biochemical states.
By cutting the map and unrolling it onto a planar surface, we can
see all of the subunits and their positional relationships more
clearly. (A) Side view of the apo-TRiC unwrapped map, visualized
from outside of the complex. The upper ring subunits are rendered
in blue and the lower ring subunits in red, while the interacting
equatorial domain regions in both rings are white. The location of
the pseudo two-fold axis is labelled as a green ellipsoid. The top ring
subunits are labelled as a1–a8, while the bottom ring subunits
labelled as a01–a08. The tilt angle of the characteristic subunits a3

and its connecting subunit a07 is highlighted with a green dotted
line, as a comparison the tilt angles of subunit pairs a2–a08 and a4–
a06 are also labelled (cyan dotted lines). (B) Side view of the
unwrapped map of TRiC–AMP-PNP. The tilt angle of the character-
istic subunits pair a3–a07 is comparable to that in apo-TRiC and still
highlighted with a green dotted line. A similar rendering style as in
(A) was adopted hereafter. (C) Side view of the unwrapped map of
TRiC–ADP-AlFx, with cis-ring (upper) in blue and trans-ring
(lower) in red. The tilt angle of subunit pair a3–a07 is labelled in
yellow dotted line, which is reduced B101 as compared with that in
the AMP-PNP state (green dotted line). (D, E) Side view of the
unwrapped map of TRiC–ADP/TRiC–ATP-AlFx. To render the fea-
tures of the maps in a comparable manner, the high-resolution
TRiC–ATP-AlFx map was blurred into a similar resolution as the
other maps. In the unwrapping process, due to oversampling in the
region close to the cylindrical axis, there might be slight distortions
in the unwrapped map especially in the inward tilting upper apical
domain regions, similar to a Mercator Projection of a global map of
the Earth.
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folding of a substrate inside the chamber may not require a

complete closure of the lid.

Expansion of the folding chambers in the ATP

hydrolysis transition state

Careful comparison of the closed cis-ring of TRiC–ADP-AlFx

with the closed ring of TRiC–ATP-AlFx reveals that on

average the chamber of the cis-ring of TRiC–ADP-AlFx is

slightly wider (B8 Å) than that of the other state (Figure 3C

and D). This expansion results in a volume of B180 000 Å3

for the closed folding chamber. It has been suggested that

group II chaperonins can assist folding of proteins around 40–

70 kDa (Spiess et al, 2004; Yam et al, 2008). Such chamber

size in TRiC is comparable to that of the closed cis-ring of

GroEL–GroES (B175 000 Å3), which can accommodate sub-

strates up to 70 kDa (Xu et al, 1997).

The subunits in the open trans-ring of TRiC–ADP-AlFx

exhibit a visible outward tilt motion of the intermediate and

apical domains as compared with the AMP-PNP state

(Figure 6A). This motion leads to a noticeable chamber

enlargement of the trans-ring (Figure 6A), which would

be the physiological acceptor state for the next round of

substrate and nucleotide binding.

ATP hydrolysis enhances the intra-ring TRiC subunit

interactions

Our cryo-EM maps of TRiC in multiple nucleotide states

depict different intra-ring subunit interaction patterns

throughout the ATPase cycle. In the open states, the maps

reveal contacts among the apical domain in some but not all

of the neighbouring subunits (Figure 5B and C). The eight

subunits in each ring appear to group into four subunit pairs

(a1–a2, a3–a4, a5–a6, and a7–a8) that create a pseudo four-fold

symmetry in TRiC, whereby each ring would be formed by a

tetramer of dimers. This can be clearly observed especially in

the map of TRiC–AMP-PNP (Figure 5C). This pattern of four

subunit pairs within a ring might be related to the differential

ATP binding and hydrolysis rate among different TRiC sub-

units (Reissmann, 2007). Upon ATP hydrolysis, the apical-

domain interactions among all subunits become more exten-

sive in the closed cis-ring (Figure 3A) and result in shutting

the cis-ring chamber (Figure 3A and D).

As for TRiC–ATP-AlFx, a similar intra-ring contacting

pattern to that in the cis-ring of TRiC–ADP-AlFx was detected

(Figure 3B and D). Interestingly, our map also reveals addi-

tional contacts between the apical/intermediate domain of

some subunits and its neighbouring equatorial domain, simi-

lar to that in the closed thermosome structure (Ditzel et al,

Figure 5 TRiC conformational comparison and transition in the ATPase cycle. (A) Rotational correlation analysis between the two rings of apo-
TRiC, with the top ring fixed and bottom ring rotated. At 01, the two rings have the best correlation score, indicating the location of the two-fold
axis as illustrated in Figure 2A. Among the eight peaks, four of them have higher value and were highlighted by orange stars indicating the
existence of a pseudo four-fold symmetry in the complex. (B) Conformational comparison between the two rings of apo-TRiC (top ring in grey
and bottom ring in yellow). (C) Conformational comparison between the two rings of TRiC–AMP-PNP (top ring in grey and bottom ring in cyan).
(D) Conformational variation between the two rings of TRiC–ADP-AlFx (cis-ring in grey and trans-ring in purple). (E) Rotational correlation
analysis between TRiC–AMP-PNP and TRiC–ADP-AlFx. At 01, the two maps have the best correlation score, indicating the best alignment angle
between the two maps as illustrated in (G, H). As in (A), among the eight peaks, four of them have higher value and were labelled by orange
stars. (F) Conformational variation between apo-TRiC (in yellow) and TRiC–AMP-PNP (in cyan). (G, H) Conformational transition from the ATP-
bound state to the ATP hydrolysis transition state with (G) showing the closed cis-ring of TRiC–ADP-AlFx overlaid with the open top ring of
TRiC–AMP-PNP, and (H) showing the open trans-ring of TRiC–ADP-AlFx aligned with the other open ring of TRiC–AMP-PNP.
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1998). These extra interactions formed in TRiC–ATP-AlFx

might be the potential forces making its chamber more

compact and even more symmetrical than that of the cis-

ring of TRiC–ADP-AlFx (Figures 3B, D, and 4E). In summary,

the apical-domain interaction is maintained or enhanced

throughout the ATPase cycle, which suggests its key role in

maintaining the association and communication of the TRiC

subunits within one ring.

Discussion

Chamber closing mechanisms of TRiC

A number of efforts have been made to describe the mechan-

ism of TRiC chamber closure based on cryo-EM studies

(Llorca et al, 1999, 2001; Booth et al, 2008). However, this

issue remains uncertain because (a) eight-fold symmetry was

imposed in their reconstructions and (b) none of these

studies included multiple intermediate states. In the present

study, we obtained symmetry-free maps of TRiC for four

nucleotide-containing states in addition to the apo state.

The asymmetrically closed intermediate (TRiC–ADP-AlFx),

especially, representing the key physiological substrate fold-

ing state, is structurally determined for the first time.

By not imposing symmetry, we uncovered structural details

not previously seen in group II chaperonins (Xu et al, 1997;

Llorca et al, 1999, 2001; Booth et al, 2008; Clare et al, 2008;

Pereira et al, 2010; Zhang et al, 2010). Our analysis clearly

shows that the ATP hydrolysis-induced chamber closure mo-

tion for each of the subunits is different (Figure 5G;

Supplementary Movie 3). A comparison of the subunit arrange-

ment in Figure 4A–E shows a trend of increasing pseudo

symmetry during the ATP hydrolysis cycle. The most charac-

teristic and dramatic change is found in the a3–a07 subunit pair.

They may possibly play a critical role in initiating the formation

of pseudo symmetry by increasing the extent of apical-domain

interactions among all the subunits of that ring. This symmetry

would lead to positive cooperativity among subunits in one

ring and result in chamber closure of the cis-ring.

Though the motion of each subunit is unique (Supple-

mentary Movie 3), the overall ATP hydrolysis-induced

chamber closure motion is similar for each subunit. To

demonstrate the motion (Supplementary Movie 4), we use

the subunit a5 and a05 pair as an example, which appear to

have minimum motion among the subunits. The cis-ring

subunits move ‘upwards’ (towards the top of the barrel),

and each domain of each subunit tilts inwards with slightly

different motions. In the trans-ring subunits, the apical

domains move neither downwards nor inwards. Rather, in

some of the trans-ring subunits, the apical and intermediate

domains tilt outwards (Figure 6A); while the equatorial

domains of most trans-ring subunits move radially outward

slightly. This outwards motion could prevent the closure of

the trans-ring. This opposing motion is a plausible indication

of the negative cooperativity of the two rings.

Mechanism of TRiC negative inter-ring cooperativity

Our characterization of the one-ring closed intermediate

TRiC–ADP-AlFx provides some unexpected insights into the

structural basis of its negative inter-ring cooperativity. ATP

hydrolysis causes a spatial rearrangement at the interface

between the two rings, as in the case of GroEL (Xu et al, 1997;

Ma et al, 2000). This rearrangement results in an observable

increase in separation between the rings in TRiC–ADP-AlFx

(Figure 6B; Supplementary Movie 4), while the two major

inter-ring contacts are maintained, as in all group II chaper-

onins (Ditzel et al, 1998). Such a distance increase could

reduce the buried surface between the two rings and

potentially modify the salt bridges formed between certain

opposing subunit pairs (Ditzel et al, 1998), which will vary

the interaction network between the rings.

Closely related to the above-discussed subunit a3 and a07
pair (Figure 4B), our open-state maps reveal that in general if

two neighbouring subunits in one ring have formed a pair

with contact in the apical domain (e.g., a3 and a4), their

connected subunits in the other ring (a07 and a06, respectively)

tend to be separated in the apical region (Figure 4A and B).

This pattern has not been previously observed, and may play

a part in both intra- and inter-ring subunit interactions. Such

interactions could contribute to the inter-ring negative co-

operativity, making TRiC work as a two-stroke molecular

machine. This more complex mechanism of inter-ring nega-

tive cooperativity of TRiC compared with GroEL is likely

related to their different inter-ring interaction patterns, that

is, the interactions are registered in TRiC and other group II

chaperonins, while it is staggered in GroEL.

The intra-ring interaction pattern differs among

chaperonins

Our structures of TRiC reported here show different intra-ring

interaction patterns from its archaeal homologue Mm-cpn or

prokaryotic homologue GroEL. In the apo state, all these

chaperonins share a common neighbouring equatorial-

domain interaction within one ring. However, the interactions

between the other domains of adjacent subunits vary

substantially. In apo-TRiC, we identified apical-domain inter-

actions between pairs of subunits in the same ring (Figures

2A and 4A). Apo-GroEL contains interactions between

adjacent apical domains and has contacts between apical

and intermediate domains of neighbouring subunits

(Supplementary Figure S8A; Braig et al, 1994; Ludtke et al,

Figure 6 The structural mechanism of TRiC negative inter-ring
cooperativity. (A) Conformational comparison between TRiC–
AMP-PNP (in light blue) and TRiC–ADP-AlFx (in purple). Only
the side view of a central slide of the two maps was shown. The
direction of the inward/outward tilt motion in the cis- and trans-
rings of TRiC–ADP-AlFx is indicated by black arrows. (B) The plot
of the density map mean intensity versus the height of TRiC. The
plot for TRiC–AMP-PNP is in light blue, and that for TRiC–ADP-
AlFx in purple. The top two ranking peaks (indicated by dotted
lines) correspond to the location of the most condensed region in
the equatorial domain in each ring. There is a detectable distance
enlargement (4–5 Å) between the two rings of TRiC induced by ATP
hydrolysis.
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2008). In contrast, apo-Mm-cpn has no apical- or intermediate-

domain contact in the open state, based on the available

symmetric structures (Clare et al, 2008; Pereira et al, 2010;

Zhang et al, 2010; Supplementary Figure S8B). This is consis-

tent with the report that the intra-ring cooperativity is relatively

weak in archaeal chaperonins, and in the T. acidophilum

thermosome it appears to be absent (Bigotti and Clarke, 2005).

These three chaperonins have thus each evolved a differ-

ent pattern of intra-ring interactions, indicating that the

intrinsic inter-subunit coordination strategy is different

among them. The enhanced intra-ring subunit contacts seen

in TRiC as compared with Mm-cpn may play an important

role in stabilizing and specifying the correct assembly of the

eight distinct subunits of TRiC; this could also promote a

coordinated rotation between the apical and intermediate

domains, beneficial for the lid formation from the eight

different subunits in TRiC.

Diverse chamber closing mechanisms among

chaperonins might be related to their different

intra- and inter-ring interaction patterns

The diverse pattern of intra-ring interactions among the open

states of TRiC, Mm-cpn, and GroEL (Supplementary Figure S8;

Figure 2; Clare et al, 2008; Pereira et al, 2010; Zhang et al, 2010)

suggests that different starting points in the chamber closing

process lead to differing trajectories of chamber closure. For

apo-Mm-cpn, chamber closure appears to involve primarily

rigid-body motion of the entire subunit when comparing only

two states (Pereira et al, 2010; Zhang et al, 2010) and shows

some interdomain movements within a subunit when an

additional intermediate state is seen (Zhang et al, 2011). In

both TRiC and GroEL, however, the allosteric rearrangement of

their lid closure involves relative domain motion within each

subunit. However, the direction of the domain motion is

different: in TRiC, the apical and intermediate domains move

mostly in the same direction (e.g., in subunits a1 and a3,

Supplementary Movie 3), while those of GroEL move in the

opposite directions (Xu et al, 1997; Booth et al, 2008). In

addition, our study depicts a complex inter-ring subunit co-

operativity in TRiC (Figure 4), and cross talk between its intra-

and inter-ring allosteric networks which may facilitate its

chamber closure. Together, the structural mechanism differ-

ences in chamber closure among different chaperonins are

related to their differences in intra- and inter-ring subunit

interaction pattern, with pronounced differences seen in the

open conformations.

This study demonstrates how evolution uses a common

structural framework but adopts different mechanical switches

due to specific gene sequences and consequent allosteric net-

works. Furthermore, it is possible that the ATPase cycle of

chaperonins might be customized to the unique intracellular

environments of various organisms or physiological states by

interaction with co-chaperones, substrate proteins and perhaps

by distinct post-translational modifications (Southworth and

Agard, 2008; Tsutsumi et al, 2009).

Materials and methods

Purification of TRiC
TRiC was purified from bovine testis essentially as described
(Ferreyra and Frydman, 2000; Feldman et al, 2003). In brief, the
tubules of bovine testis (500 g) separated from the tunica albuginea

by dissection were homogenized in buffer H (20 mM HEPES/KOH
(pH 7.4), 5 mM MgCl2, 0.1 mM EDTA, 50 mM NaCl, 1 mM DTT)
containing the protease inhibitors leupeptine (2mg/ml), aprotinin
(0.5 mg/ml), pepstatin (0.5mg/ml) and PMSF (0.2 mM), and the
lysate was clarified by centrifugation for 30 min at 20 000 g followed
by a 1-h centrifugation step at 100 000 g. The lysate was subjected to
a 35% ammonium sulphate cut, and the resulting supernatant was
precipitated with a final concentration of 50% ammonium sulphate.
The pellet was resuspended in a small volume of MQ-A buffer
(20 mM HEPES/KOH (pH 7.4), 5 mM MgCl2, 0.1 mM EDTA, 50 mM
NaCl, 10% glycerol, 1 mM DTT) and 30 ml aliquots, respectively,
were loaded on sucrose cushions (lower layer: 2 ml 60% sucrose in
MQ-A buffer; upper layer 5 ml 20% sucrose in MQ-A buffer). After
20 h ultracentrifugation in a SW-28 rotor at 26 000 r.p.m. and 41C,
the sucrose cushions together with all sedimented materials were
pooled, dialysed against MQ-A buffer, and loaded on a Q Sepharose
FF column (60 ml, GE Healthcare, USA) equilibrated in MQ-A
buffer. Bound proteins were eluted with 0.4 M NaCl in MQ-A buffer.
Fractions containing proteins were pooled and diluted 1:1 in MQ-A
buffer before they were loaded on a High-Trap Heparin column
(20 ml, GE Healthcare, USA) equilibrated in MQ-A buffer containing
0.2 M NaCl. Bound proteins were eluted by a NaCl gradient ranging
from 0.2 to 1 M NaCl. Fractions containing TRiC were pooled,
concentrated using an Amicon Ultra-15 10K concentrator (Millipore
Corporation, USA), and loaded on a Superose 6 10/300 GL column
(GE Healthcare). Fractions containing the oligomeric chaperonin
were pooled, and aliquots were flash frozen in liquid nitrogen.

Electron cryo-microscopy
TRiC samples were prepared for cryo-EM studies by dilution of
purified TRiC to 0.5 mg/ml. The TRiC sample was proven to be
folding active under our freezing conditions by an actin refolding
assay (Meyer et al, 2003). Nucleotide-free samples were frozen
immediately. TRiC–ATP-AlFx/TRiC–ADP-AlFx samples were incu-
bated in the presence of 1 mM ATP/ADP, 5 mM MgCl2, 5 mM
Al(NO3)3, and 30 mM NaF for 1 h at 301C prior to freezing. For
TRiC–ADP/TRiC–AMP-PNP, the sample was incubated in the
presence of 1 mM ADP/10 mM AMP-PNP and 5 mM/15 mM MgCl2
for 15 min at 301C prior to freezing. Since commercial AMP-PNP
typically contains impurities (Meyer et al, 2003), we performed
purification on it by anion exchange chromatography as described
(Horst et al, 1996). In all, 3ml of sample was deposited onto a glow-
discharged 400/200 mesh Quantifoil holy carbon grid (1.2�1.3mm
hole size, Quantifoil Micro Tools GmbH, Jena Germany). The grid
was flash frozen in liquid ethane using a Vitrobot (FEI, Hillsboro,
OR, USA). Data were recorded on a JEM 3200FSC microscope
(JEOL, Tokyo) equipped with a field-emission gun operated at
300 kV and an in-column energy filter (using 20 eV slit). The spot
size was set to 1; the condenser and objective aperture were set to
50 and 120 mm, respectively. Specimen temperature was maintained
at 101 K. Images were recorded at � 50 000 microscope magnifica-
tion on Kodak SO-163 films with the specimen dose of 18 electrons/
Å2. The images were digitized on a Nikon Super CoolScan 9000 ED
scanner with 6.35mm/pixel scanning interval.

Image processing, 3D reconstruction, and segmentation
The particles were boxed out from digitized micrographs by boxer
from EMAN 1.8 (Ludtke et al, 1999, 2001) and e2boxer.py from
EMAN2 (Tang et al, 2007). CTF parameter estimation was carried
out using the EMAN1 program ctfit. Reference-free 2D analysis was
carried out using refine2d program in EMAN1 (Ludtke et al, 1999,
2001). For the ADP-AlFx state, there are two conformational states
that coexist based on the 2D image analysis (Supplementary Figure
S1A), so that multirefine procedure in EMAN1 as described
previously (Chen et al, 2006; Booth et al, 2008) was employed.
All the 3D reconstructions using EMAN1 were completed with no
symmetry imposed. In addition, a recently developed 2D fast
rotational matching (FRM2D) algorithm (Cong et al, 2003, 2005;
Cong and Ludtke, 2010), available in EMAN 1.8þ , was adopted in
the final refinement. This method has been used to obtain a number
of subnanometer resolution cryo-EM maps (Cong et al, 2009, 2010).
Micrographs with a defocus range of B1.2–3.5mm were used in the
final reconstruction process. For each of the five states, the particle
number included in the final 3D reconstruction was listed in
Supplementary Figure S2A. Except for the closed ATP-AlFx state
(4.7 Å; Cong et al, 2010), the resolutions of the rest of the four states
are assessed to be in the 10.5–13.9 Å resolution range based on the
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0.5 cutoff for the Fourier Shell Correlation (Saxton and Baumeister,
1982; Harauz and van Heel, 1986).

Map segmentation and visualization were done with CHIMERA
(http://www.cgl.ucsf.edu/chimera/; Pettersen et al, 2004).

Validation of the existence of the one-ring closed
conformation in TRiC–ADP-AlFx data set
The existence of the one-ring closed asymmetric conformation
induced by ATP hydrolysis is validated by our reference-free 2D
image analysis and 3D reconstruction. First, the 2D image analysis
of TRiC–ADP-AlFx particles depicts a unique end-on view in which
all the subunits appear twisted (Supplementary Figure S1B), not
seen in any of the other four states. If the two rings were in the same
conformation, there would be no handedness in the end-on
projection of TRiC as seen here. The twisted pattern is comparable
to computed projections of the true bullet-shaped GroEL–Aacpn10–
ADP complex (Chen et al, 2008), as well as a simulated asymmetric
map (composed of a closed ring from TRiC–ATP-AlFx and an open
ring from apo-TRiC). Moreover, our 3D reconstruction using
multirefine in EMAN1 (Chen et al, 2006) indicates that the majority
of TRiC particles (B65%) in this data set adopt the one-ring closed
conformation (and were used in the reconstruction of the map
shown in Figure 3A), while the remainder is in the conformation
with both rings open (Supplementary Figure S1A and C), similar to
the other open conformations of TRiC. The above analyses clearly
confirm the existence of this asymmetric intermediate of TRiC in the
ATP hydrolysis transition state (mimicked by ADP-AlFx).

Pseudo atomic model building by flexible fitting
To interpret the structural mechanism in more detail, a pseudo
atomic model for each state was generated. We first built a
homology model of the TRiC complex in the closed state (TRiC–
ATP-AlFx). Since the current reconstructions were completed at
relatively low resolution, we began with a homology model
corresponding to the CCT2 subunit using thermosome (1A6D) as
template and fit it as rigid body to all the subunits in the closed
TRiC–ATP-AlFx map. In order to fit the closed-state model of the
entire TRiC complex to each of the maps in different biochemical
states, we used the real-space refinement/sampling program DireX
(Schroder et al, 2007, 2010). DireX uses a geometrical sampling
approach to flexibly fit a model into the density map in an iterative
manner while ensuring correct stereochemistry and non-over-
lapping atoms. The model of the closed state was first placed into
the density map of apo-TRiC using CHIMERA (Pettersen et al,
2004). Strong elastic restraints were used to avoid overfitting the
density. The restraints were chosen between randomly chosen
atoms that are within a distance range of 3–15 Å and that are
separated by not 4100 residues along the protein chain. The
number of restraints was chosen as two times the number of atoms.

The fitted model of apo-TRiC then served as the starting point for
the refinements of other states. For the fitting, 500 optimization
steps were performed with DireX, which took on average about 7 h
on a single cpu (Intel Nehalem 2.93 GHz). In all refinements, a
restrained grouped occupancy refinement was used, which adapted
the contribution of the residues to the model density. This was done
to account for reduced or missing density. This, however, adds only
a small shift to the global position and orientation of the individual
subunits and has almost no influence on the local structure. Finally,
the models were subjected to minimization with CNS (Brunger,
2007). As shown in Supplementary Figure S3, these models fit to the
corresponding density maps well particularly for equatorial and
intermediate domains. Our models do not include some regions of
the apical domain in several subunits, for example, in apo-TRiC,
because the map in those regions was not very well resolved due to
the dynamic nature of those subunits. However, such models are
useful and simplified to represent the structural complexity and
variations of TRiC in the ATPase cycle.

Accession codes
The density maps are deposited to EMDB (accession numbers EMD-
1960, EMD-1961, EMD-1962, and EMD-1963) and the associated
models are deposited to PDB (PDB IDs: 4A0O, 4A0V, 4A0W, and
4A13). They will be released upon publication.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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